

PII: S0040-4039(97)00201-3

Deracemization of (±)-2,2-Disubstituted Epoxides via Enantioconvergent Chemoenzymatic Hydrolysis using Nocardia EH1 Epoxide Hydrolase and Sulfuric Acid

Romano V. A. Orru, Wolfgang Kroutil and Kurt Faber*

Institute of Organic Chemistry, Graz University of Technology, Stremayrgasse 16, A-8010 Graz, Austria. <Faber@ORGC.TU-GRAZ.AC.AT>

Abstract: 2-Substituted (S)-1,2-diols were prepared in a one-pot procedure with >90% ee and >90% isolated yield via deracemization of (\pm) -2,2-disubstituted oxiranes through sequential (i) biocatalytic asymmetric hydrolysis using Nocardia EH1 epoxide hydrolase and (ii) acid catalyzed hydrolysis of the remaining oxirane enantiomer. © 1997 Elsevier Science Ltd. All rights reserved.

Recently, microbial epoxide hydrolases from fungi or bacteria have become highly versatile biocatalysts for the kinetic resolution of epoxides.¹ As a rule, the enzymatic hydrolysis proceeds by following a classical kinetic resolution pattern, *i.e.* optically enriched epoxide and the corresponding enantiomeric vicinal diol are obtained in 50% theoretical yield at 50% conversion. On the other hand, procedures which would lead to the formation of a single product enantiomer in 100% theoretical yield would clearly be advantageous over the classic resolution pattern.² A recent communication³ on the deracemization of a cyclic trisubstituted oxirane by tandem bio- and chemocatalytic hydrolysis using *Corynebacterium* C12 and perchloric acid prompts us to disclose some of our preliminary results. We have recently shown⁴ that the enzymatic hydrolysis of 2,2-disubstituted epoxides proceeds *via* attack at the less substituted C-atom with excellent regioselectivity thus leading to *retention* of configuration at the stereogenic center. On the other hand, it is known that the acid-catalyzed hydrolysis of an epoxide can result in ring opening with *inversion*⁵ at the more substituted oxirane carbon atom under carefully controlled reaction conditions. These considerations led us to anticipate that the combination of bio- and chemocatalysis might provide access to enantiomerically enriched vicinal diols as the sole product from racemic 2,2-disubstituted epoxides in 100% theoretical yield.

In the first step, 2,2-disubstituted epoxides⁶ (\pm)-1-3 were hydrolyzed using lyophilized whole cells of *Nocardia* EH1.^{1c} With R being *n*-pentyl (1) or 4-pentenyl (2), the selectivity was found to be absolute (E >200); with substrate 3 the selectivity was slightly reduced, but still in a preparatively useful range (E = 80). When the remaining (*R*)-epoxides were isolated and treated with conc. sulfuric acid in dioxane/water (97:3), the corresponding (*S*)-diols were formed within minutes. No trace of racemization was observed (entries 1-3).⁷ Aiming at a simple deracemization technique, which could be performed in a one-pot reaction sequence,⁸ both of the reactions were coupled (entries 4-6). Consequently, the enzymatic hydrolysis of (\pm)-1-3 was run to the optimum degree of conversion,⁹ and the crude reaction mixture was directly treated with conc. H₂SO₄ in dioxane/water (97:3). In this way, racemic epoxides (1-3) were directly converted to the corresponding (*S*)-diols **1a-3a** in >90 % isolated yield and >90 % e.e.

$R^{S} R + [OH^{-}] +$				dioxa → R [°] H ⁻	⁺ cat. ne/H ₂ O ^{δ+} OH ^{δ+} OH ^{δ+} δ- δ ₋ H	OH R ^{°S} OH sole product
			(<i>R</i>)-1			(<i>S</i>)-1a
• •	= (CH ₂) ₃ CH=	CH ₂	(<i>R</i>)-2			(S)- 2a
(±)-3 R =	= CH ₂ Ph		(<i>R</i>)-3			(S)- 3a
Entry	Process	Epoxide	E.e. [%]	Diol	Yield [%]	E.e. [%]
1	2-step	(<i>R</i>)-1	96	(S)- 1a	97	96
2	2-step	(<i>R</i>)-2	99	(S)- 2a	99	99
3	2-step	(R)- 3	83	(S)- 3a	87	83
4	one-pot	(±)-1	_	(S)-1a	98	98
5	one-pot	(±)- 2	_	(S)- 2a	97	99
6	one-pot	(±)- 3	_	(S)- 3a	94	92

In summary, we have developed a simple one-pot procedure for the deracemization of 2,2-disubstituted epoxides based on (i) biocatalytic resolution using Nocardia EH1 epoxide hydrolase and (ii) acidic hydrolysis of the remaining epoxide enantiomer (H₂SO₄ cat., dioxane/water). Thus, the enantiomerically enriched corresponding 1,2-diols were obtained close to the theoretical limit of 100% yield and 100% ee. The scope and limitations of this method as well as full experimental details will be reported in due course.

Acknowledgements: The authors wish to express their cordial thanks to C. Syldatk (Stuttgart) for providing Nocardia EH1. This project was performed within the Spezialforschungsbereich Biokatalyse (SFB-A4). Financial support from the Fonds zur Förderung der wissenschaftlichen Forschung (F 104), the European Community (BIO4-CT95-0005) and the Austrian Federal Ministry of Sciences is gratefully acknowledged.

References and Notes

- 1. a) For a review see: Faber, K.; Mischitz, M.; Kroutil, W. Acta Chem. Scand. 1996, 50, 249. b) Pedragosa-Moreau, S.; Archelas, A.; Furstoss, R. Tetrahedron 1996, 52, 4593. c) Osprian, I.; Kroutil, W.; Mischitz, M.; Faber, K. Tetrahedron: Asymmetry 1997, 8, 1.
- 2. For a review on 'second-generation biotransformations' see: Stecher, H.; Faber, K. Synthesis 1997, in press.
- Archer, I. V. J.; Leak, D. J.; Widdowson, D. A. Tetrahedron Lett. 1996, 37, 8819.
 Mischitz, M.; Mirtl, C.; Saf, R., Faber, K. Tetrahedron: Asymmetry 1996, 7, 2041.
- 5. Via a borderline S_N²-mechanism: Biggs, J.; Chapman, N. B.; Finch, A. F.; Wray, V. J. Chem. Soc. (B) 1971, 55.
- 6. Mischitz, M.; Kroutil, W.; Wandel, U.; Faber, K. Tetrahedron: Asymmetry 1995, 6, 1261.
- 7. Using HClO₄, no diols were formed and elimination and/or rearrangement was the major reaction.
- 8. Typically, racemic epoxide (300mg, 2.00-2.40 mmol) was hydrolyzed using Nocardia EH1 cells^{1c} (300mg) in Tris-buffer (5 mL, 50 mM, pH 8.0) by shaking the mixture at 30°C with 120 rpm. After an appropriate degree of conversion was reached (*i.e.* slightly beyond 50%)⁹ the reaction was quenched by extraction of (R)-1-3 and (S)-1a-3a using CH₂Cl₂. After evaporation, the crude mixture was treated for ~5 min. with aq. dioxane (150 mL, 3% H₂O) containing containing 1.5 mL of conc. sulfuric acid. After neutralization (sat. aq. NaHCO₃), diols (5)-1a-3a were extracted with EtOAc (5 x 10 mL) and analyzed as described in ref. 1c.
- 9. I.e. slightly beyond 50%, see: Vänttinen, E.; Kanerva, L. T. Tetrahedron: Asymmetry 1995, 6, 1779.

(Received in Germany 23 December 1996; revised 26 January 1997; accepted 28 January 1997)